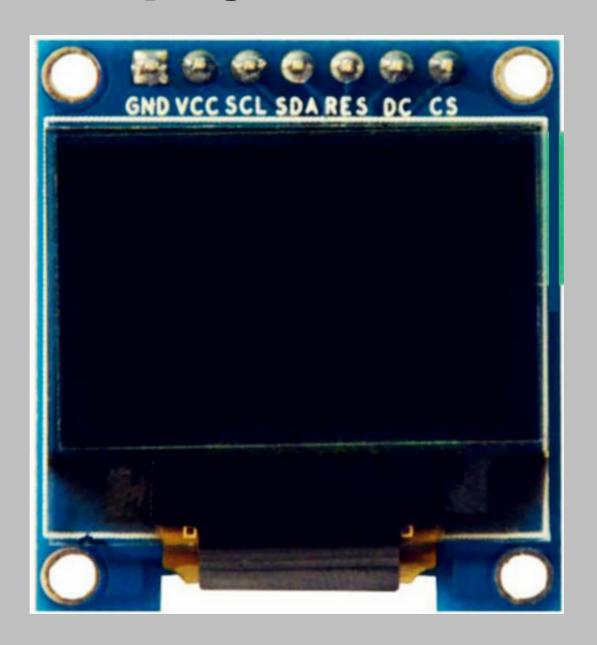
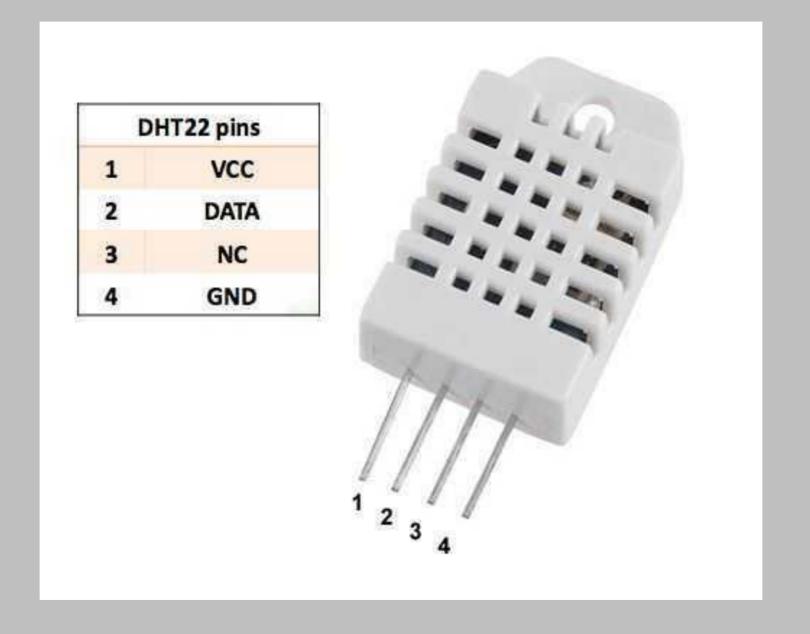

NodeMCU ESP8266 — Gráfico de temperatura e umidade com DHT22


Por Fernando Koyanagi

Objetivo

Faremos um termômetro digital utilizando um NodeMCU Esp8266, um display OLED e um sensor de umidade e temperatura AM2302 DHT22. No display mostraremos a temperatura e a umidade lida pelo sensor e um gráfico em tempo real.



Display OLED 96"

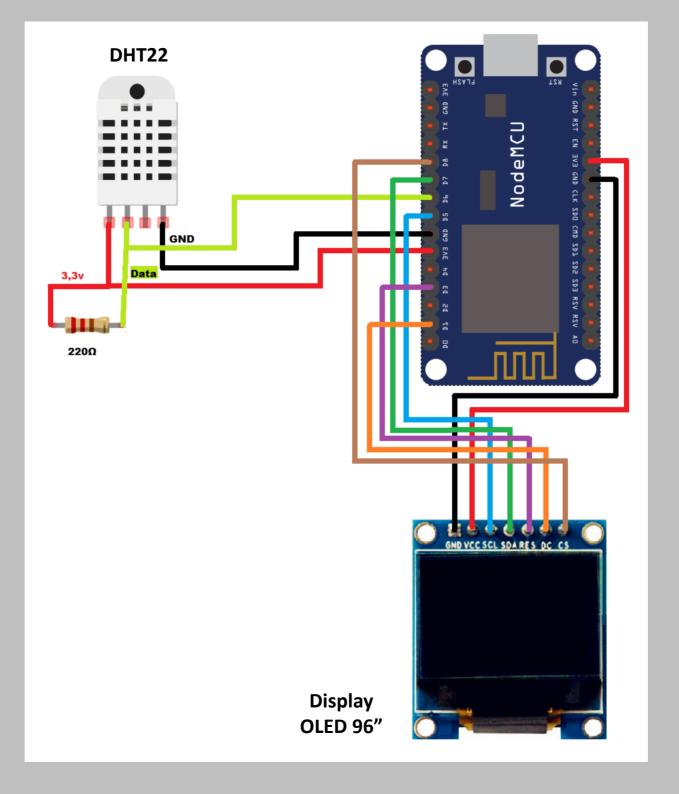
Sensor de Umidade e Temperatura AM2302 DHT22

Vídeo do projeto funcionando

EXEMPLO FUNCIONANDO

Em www.fernandok.com

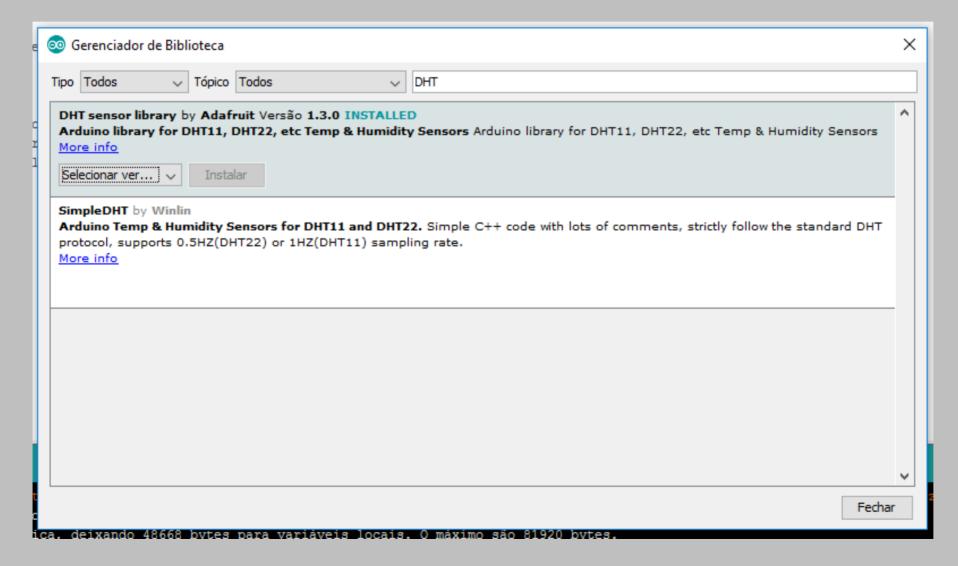
Download arquivo PDF dos diagramas Download arquivo INO do código fonte


Montagem

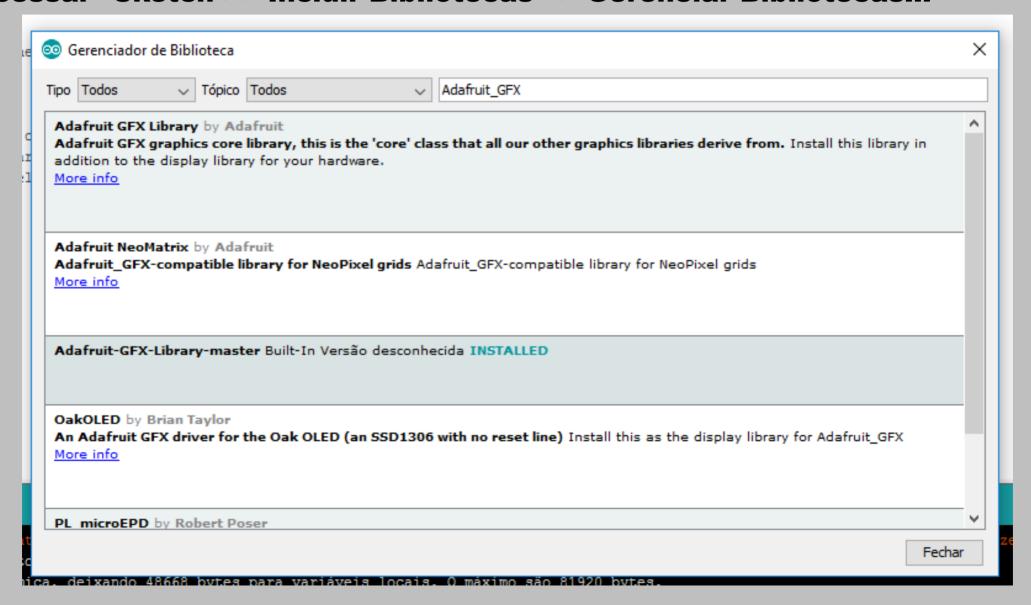
NodeMCU	OLED
D8	CS
D1	DC
D3	RES
D7	SDA
D5	SCL
3,3v	VCC
GND	GND

NodeMCU DHT22

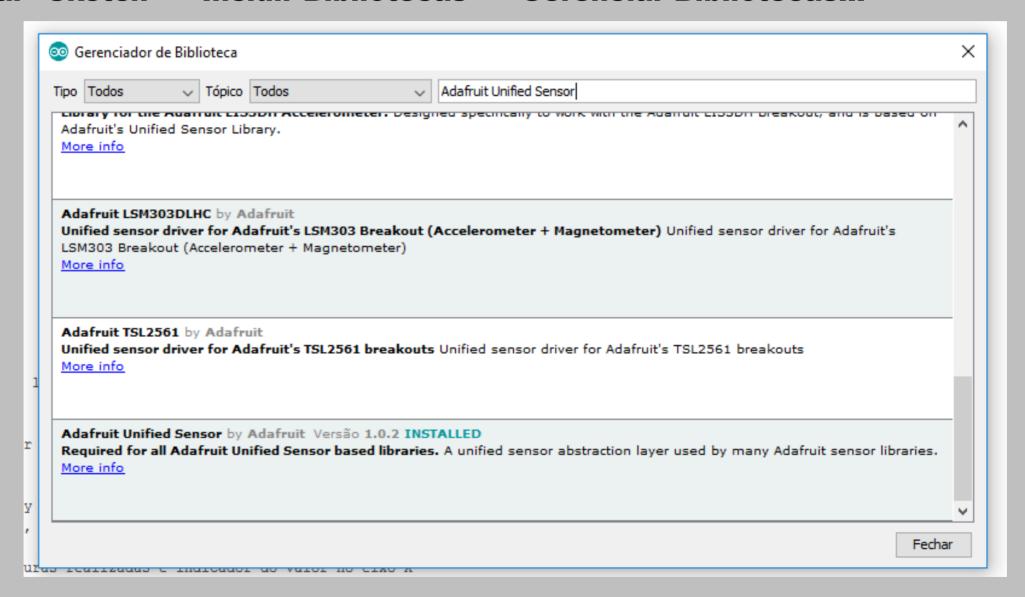
D6 Data
GND GND
3,3v VCC


VCC \rightarrow Resistor 220 $\Omega \rightarrow$ Data

Adicione a seguinte biblioteca "DHT sensor library" para comunicação com o sensor de umidade e temperatura.


Basta acessar "Sketch >> Incluir Bibliotecas >> Gerenciar Bibliotecas..."

Adicione a seguinte biblioteca "Adafruit-GFX-Library-master".


Basta acessar "Sketch >> Incluir Bibliotecas >> Gerenciar Bibliotecas..."

Adicione a seguinte biblioteca "Adafruit Unified Sensor".

Basta acessar "Sketch >> Incluir Bibliotecas >> Gerenciar Bibliotecas..."

Adicione também a biblioteca "Adafruit-SSD1331-OLED" para comunicação com o display oled.

Acesse o <u>link</u> e faça download da biblioteca.

Descompacte o arquivo e cole na pasta de bibliotecas da IDE do arduino.

C:/Program Files (x86)/Arduino/libraries

Código

Primeiramente vamos adicionar as bibliotecas que serão utilizadas em nosso código.

```
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1331.h> // comunicação com o display oled
#include <DHT.h> // comunicação com o sensor de umidade e temperatura
```


Definições

Veremos abaixo as variáveis que utilizaremos durante o programa e a instância dos objetos.

```
// pinagem para o NodeMCU ESP8266
#define sclk D5
#define mosi D7
#define cs D8
#define rst D3
#define dc D1
// definição das cores que serão utilizadas
#define BLACK 0x0000
#define RED 0xF800
#define CYAN 0x07FF
#define YELLOW 0xFFE0
#define WHITE 0xFFFF
```


Definições

Veremos abaixo as variáveis que utilizaremos durante o programa e a instância dos objetos.

```
#define DHTPIN D6 // pino de dados do DHT será ligado no D6 do esp
#define DHTTYPE DHT22 // tipo do sensor
// construtor do objeto para comunicar com o sensor
DHT dht(DHTPIN, DHTTYPE);
// contrutor do objeto para comunicar com o display OLED
Adafruit SSD1331 display = Adafruit SSD1331(cs, dc, mosi, sclk, rst);
//variáveis que armazenarão os valores lidos da umidade e temperatura
int umidade = 0;
int temperatura = 0;
//variável que armazenará o valor da coordenada Y para desenharmos uma linha de exemplo
//que varia os valores de 1 em 1
int linhaExemplo = 20;
int fator = 1; //indicará se somaremos ou subtrairemos uma unidade na variável linhaExemplo
```


Definições

Veremos abaixo as variáveis que utilizaremos durante o programa e a instância dos objetos.

Setup

Na função setup(), faremos a inicialização da variável "dht", que é responsável pela comunicação com o sensor de umidade e temperatura, inicializaremos também a variável "display" que utilizaremos para se comunicar com o display oled.

```
void setup()
{
    //inicializa o objeto para comunicarmos com o sensor DHT
    dht.begin();

    //inicializa o objeto para comunicarmos com o displa OLED
    display.begin();
    ...
}
```


Setup

Vamos a seguir configurar algumas características do display e desenhar os eixos X e Y do gráfico.

```
void setup()
     //pinta a tela toda de preto
     display.fillScreen(BLACK);
     //os comandos a seguir irão desenhar as linhas dos eixos cartesianos na cor branca
     //drawFastVLine(x,y,width,color) --> linha vertical
     display.drawFastVLine(POS X GRAFICO, POS Y GRAFICO, ALTURA GRAFICO, WHITE); //eixo Y
     //drawFastHLine(x,y,width,color) --> linha horizontal
     display.drawFastHLine(POS X GRAFICO, ALTURA GRAFICO+1, COMPRIMENTO GRAFICO, WHITE); //eixo X
     //desenha 2 pixels na tela bem no início do eixo Y para formar uma "seta"
     display.drawPixel(4,2,WHITE);
     display.drawPixel(6,2,WHITE);
     //desenha 2 pixels na tela bem no final do eixo X para formar uma "seta"
     display.drawPixel(POS_X_GRAFICO + COMPRIMENTO_GRAFICO-2, POS_Y_GRAFICO + ALTURA_GRAFICO-1 ,WHITE);
     display.drawPixel(POS_X_GRAFICO + COMPRIMENTO_GRAFICO-2, POS_Y_GRAFICO + ALTURA_GRAFICO+1, WHITE);
```

Setup

Vamos a seguir desenhar em tela no lugar específico onde indicaremos o valor da Temperatura (T) e Umidade (U) em tempo real.

```
void setup()
     //configura o tamanho do texto que escreveremos em tela
     display.setTextSize(1);
     //configura a cor branca para o texto
     display.setTextColor(WHITE);
     //posiciona o cursor para escrita
     display.setCursor(POS_X_DADOS, POS_Y_DADOS);
     display.print("T: "); //indicando a temperatura
     display.setCursor(POS_X_DADOS+35, POS_Y_DADOS);
     display.print(" U: "); //indicando a umidade
```


loop

Na função loop(), vamos recuperar a umidade e temperatura lida pelo sensor e escrever na tela no local específico. A cada intervalo de 5 segundos o valor é lido do sensor e escrito em tela.

```
void loop()
     //faz a leitura da umidade
     umidade = dht.readHumidity();
     //faz a leitura da temperatura
     temperatura = dht.readTemperature();
     //limpa a área onde colocamos o valor da temperatura e da umidade
     display.fillRect(POS X DADOS+15, POS Y DADOS, 20, 10, BLACK);
     display.fillRect(POS X DADOS+55, POS Y DADOS, 30, 10, BLACK);
     //reposiciona o cursor para escrever a temperatura
     display.setCursor(POS_X_DADOS+15, POS_Y_DADOS);
     display.setTextColor(RED);
     display.print(temperatura);
     display.print((char)247); //escreve o símbolo de grau em tela
     //reposiciona o cursor para escrever a umidade
     display.setCursor(POS X DADOS+55, POS Y DADOS);
     display.setTextColor(CYAN);
     display.print(umidade);
     display.print("%");
```

loop

Vejamos abaixo como colocar os pontos no gráfico de acordo com a leitura.

```
//mapeando o valor das variáveis para colocar no gráfico
//necessário pois, o display tem 64px de altura e separamos apenas 50 para o gráfico
//umidade pode ser lida de 0-100
int temperaturaMepeada = map(temperatura,0,100,0,50);
int umidadeMapeada = map(umidade,0,100,0,50);
//desenha na tela o ponto referente aos valores lidos do sensor
display.drawPixel(POS X GRAFICO+leituraAtual, ALTURA GRAFICO-temperaturaMepeada, RED);
display.drawPixel(POS X GRAFICO+leituraAtual, ALTURA GRAFICO-umidadeMapeada, CYAN);
//desenha na tela o ponto referente a nossa linha de exemplo que fica variando
display.drawPixel(POS_X_GRAFICO+leituraAtual, ALTURA_GRAFICO-linhaExemplo, YELLOW);
//aqui controlamos nossa linha de exemplo, quando chega no valor máximo decrementamos o valor
//até um valor mínimo determinado (no nosso caso 10), e a partir daí, incrementa novamente
if(linhaExemplo == 50) fator = -1; //decrementa
else if(linhaExemplo == 10) fator = 1; //incrementa
//soma o valor do fator na linhaExemplo
linhaExemplo += fator;
//incrementa o contador de leituras realizadas
leituraAtual++;
```

S

loop

Por último vamos escrever nossa lógica para limpar a tela do gráfico assim que atingir seu limite

```
void loop()
  //se a leitura chegar em 90 (número máximo do eixo X) então limparemos a área do gráfico para voltarmos
a desenhar.
    if(leituraAtual == 90)
     //limpa a área toda do gráfico
     display.fillRect(POS X GRAFICO+1, POS Y GRAFICO-1, COMPRIMENTO GRAFICO, ALTURA GRAFICO-1, BLACK);
     leituraAtual = 1; //volta o contador de leitura para 1 (nova coordenada X)
     //como limpamos a área do gráfico, temos que redesenhar os pontos da "seta" que ficam na área interna
     do gráfico
     display.drawPixel(6,2,WHITE);
     display.drawPixel(POS X GRAFICO+COMPRIMENTO GRAFICO-2,POS Y GRAFICO+ALTURA GRAFICO-1,WHITE);
     //intervalo de tempo para realizarmos nova leitura de dados
     delay(5000);
```


Em www.fernandok.com

Download arquivo PDF dos diagramas Download arquivo INO do código fonte

