Laboratório de Motor de Passo

Recursos usados

- ESP WROOM 32
- Módulo TFT LCD 1,44" RGB
- Driver DRV8825
- 2 Potenciômetros: 10k e 50k
- Capacitor Eletrolítico 220uF
- Motor de Passo

Intenção dessa aula

- 1. Montar um laboratório para motores de passo
- 2. Introdução à programação Multitask no ESP 32
- 3. Mostrar como calcular valores de tensão, corrente de motores de passo
- 4. Testar diversos tipos de motores

Montagem...

Montagem do Display...

Ligações do Display...

ESP32	DISPLAY
3V3	5V
GND	GND
3V3	LED
D18	SCL
D23	SDA
D02	RS
D04	RST
D05	CS

Montagem do DRV8825...

Ligações do DRV8825...

ESP32	DRV8825
D25	RST
D26	SLP
D34	ENA
D35	MO
D32	M1
D33	M2
D14	DIR
D27	STP
GND	GND

Ligação dos Potenciômetros

	DRV8825 (Controle de Corrente)	VELOCIDADE
ESP32	D13	D12

Para melhorar a manipulação do controle de corrente do DRV8825, trocamos o potenciômetro de ajuste do driver por outro maior, porém de mesma resistência (10K ohms).

Para fazer a calibração dos dados coletados para calcular a tensão sobre o cursor do potenciômetro do driver DRV8825, usamos o Excel.

Primeiro coletamos os valores de AD da porta de entrada do ESP que varia de 0 a 4095.

Com um multímetro, medimos a tensão do cursor do potenciômetro do driver em cada momento.

Valor do AD	Tensão em Milivolts
10	128
144	241
332	396
540	558
656	656
784	764
976	915
1200	1092
1362	1228
1514	1349
1845	1618
2188	1894
2385	2059
2711	2321
2927	2483
3263	2705
3647	2897
3983	3039
4091	3080

X	🚽 🍠 🖷 🖓	- -									eq	juacao_te	nsao_pot
Arq	uivo Página	a Inicial	Inserir	Layout da	Página F	órmulas	Dados	Revisão	Exibiçã	0			
Ta Diná	bela Tabela	Imagem	Clip-Art F	Formas SmartA	rt Instantâne	coluna:	Linhas	Pizza Bar	ras Área	Dispersão	Outros Gráficos *	Linha	Coluna (
	Tabelas			llustrações				Gráf	icos	Dispersão			rá
	A1	-	0	<i>f</i> _x 10						0.0	800	bd	
	А	В	С	D	E	F	G	Н		• ° • •	<u>~</u>	\square	
1	10	128											· _
2	144	241											
3	332	396								0 0 0			
4	540	558								ili <u>T</u> odo	s os Tipos	de Gráfic	o –
5	656	656											
6	/84	/64											
-	976	915		Com							ha		
0 0	1200	1092		COM	05	valo	res	CO	letad	105,	pa	sta	
10	1502	1220		gerar	um 🧕	ráfic	co d	e dis	pers	são.			
11	1845	1618							-				
12	2188	1894											
13	2385	2059											
14	2711	2321											
15	2927	2483											
16	3263	2705											
17	3647	2897											
18	3983	3039											
19	4091	3080											
20													
11													

В С F G н Κ А D F L v = 0.7492x + 185.92 $R^2 = 0.9944$ Série1 R² significa o desvio dos valores, Linear (Série1) quanto mais próximo de 1, menor é o desvio.

O Excel gera a equação linear, que será usada no código.

79 80	void setup() {	ESP32 Co	: (Dual re)
20	//inicia a comunicação serial		
83	Serial.begin(115200);		
84	// Configura as portas como saída	Declaraçõe	es Globais
85	pinMode(RST, OUTPUT):		
86	pinMode(SLP, OUTPUT);		
87	pinMode(ENA, OUTPUT);		1
88	pinMode(M0, OUTPUT);		
89	pinMode(M1, OUTPUT);		
90	<pre>pinMode(M2, OUTPUT);</pre>	Funções	Globais
91	<pre>pinMode(DIR, OUTPUT);</pre>		
92	<pre>pinMode(STP, OUTPUT);</pre>		
93	// Configura as portas como entrada		/
94	<pre>pinMode(POTD, INPUT);</pre>		
95	<pre>pinMode(POTV, INPUT);</pre>		
96		Configu	ırações
97	//Configuração do driver		
98			
99	// MMP: Multiplicador de micro passo:		
100	// 1- passo inteiro	Core 0	Core 1
101	// 2- meio passo		
102	// 4- 1/4 de passo		
104	// 16 - 1/16 de passo		v
105	// 32 - 1/32 de passo		
105	MMP = 1:		
107	····	Task 1	Task 2
108	// Configura as portas do driver para passo inteiro		
109	digitalWrite(M0, LOW);		
110	digitalWrite(M1, LOW);		
111	digitalWrite(M2, LOW);	LOOP 🖣	LOOP 🖣
112	// Desativa o modo sleep		
113	<pre>digitalWrite(SLP, HIGH);</pre>		
114	// Desativa o modo reset		
115	<pre>digitalWrite(RST, HIGH);</pre>		
116	// Ativa as saídas do driver		
117	digitalWrite(ENA, LOW);		
118	// Define a direção do motor		
	digitalWrite(DIR, HIGH);		

171	// Configuração das task	
172	<pre>xTaskCreatePinnedToCore(</pre>	
173	codeForTask1, //	Função Task
174	"led1Task", //	Nome da Task
175	2000, //	Tamanho da pilha da Task
176	NULL, //	Parâmetro da Task
177	1, //	Prioridade da Task
178	&Task1, //	Identificação da Task para acompanhar a Task criad
179	Ø); //	Core usado
180		
181	//Delay necessário para	iniciar a task 1
182	delay(500);	
183		
184	xTaskCreatePinnedToCore(
185	codeForTask2,	
186	"led2Task",	
187	2000,	
188	NULL,	
189	1,	
190	&Task2,	
191	1);	
192		
193	delay(500);	
194	}// Fim do setup	
105		

Observação:

222	// A função void loop() não será usada pelo programa
223	// Porém é necessária para funcionar corretamente
224	<pre>void loop() {</pre>
225	
226	delay(100);
227	
228	}

Medindo a indutância dos motores de passo

	Nossas medidas do Nema 17	Datasheet do Nema 17
	Indutância	Indutância
Bobina 1	2,90mH	3mH
Bobina 2	6,38mH	

Medindo a indutância dos motores de passo

	Nossas medidas do Nema 17
	Indutância
Bobina 1	2,90mH
Bobina 2	6,38mH

Datasheet do Nema 17

Indutância

3mH

Porque ocorre diferença

entra as bobinas

Medindo a indutância dos motores de passo Porque ocorre diferença entra as bobinas?

Devido ao alinhamento dessas bobinas com o imã do eixo, as medidas podem sofrer alterações pois o imã pode incidir no campo magnético das bobinas.

Medindo a indutância dos motores de passo Porque ocorre diferença entra as bobinas?

Repare que a bobina A está alinhada ao um conjunto de imãs do eixo, portanto o valor medido maior que das outras bobinas medidas

Medindo a indutância dos motores de passo Porque ocorre diferença entra as bobinas?

Quando as bobinas não estão alinhadas a um conjunto de imãs do eixo, o valor medido é o valor real da indutância do motor, portanto o menor valor medido.

Medindo Motores de passo

Teste Prático

Medindo Motores de passo

Teste Prático

Motor Grande de Impressora					
Tensão	Consumo	Tensão no Potenciômetro	Controle de Corrente do Driver	Giros por minuto (RPM)	
12v	0,50A	1008mv	2,02A	204	
					1008mv 2.02A 2.02A 2.02A 2.02A 2.02A 2.02A 2.024 2.1094 1.150 3.5 J.s

Medindo Motores de passo

Teste Prático

		Motor Peque	eno de Impressora		
Tensão	Consumo	umo Tensão no Controle de Corrente Potenciômetro do Driver		Giros por minuto (RPM)	*Para motores de 20 passos por volta: RPM*10
12v	0,26A	329mv	0,66A	1010*	
				С: 0.66А RPM: 101 АD: 192 Pulso: 1474, s	

Medindo Motores de passo

	Nossas medic de Driver		
	Resistência	Indutância	
Bobina 1	51,5Ω	29,7mH	
Bobina 2	51,2Ω	26,9mH	Menor medida
CC CC CC			

Teste Prático

Motor de driver de DVD					
Tensão	Consumo	Tensão no Potenciômetro	Controle de Corrente do Driver	Giros por minuto (RPM)	*Para motores de 20 passos por volta: RPM*10
12v	0,29A	322mv	0,64A	2060*	
	AC MANY DC OUTHAT DC OUTHAT CC MANY DC OUTHAT DC OUTHAT CC MANY DC O			T: 322 mv C: 0.64A RPM: 206 AD: 165 Pulso: 728 Js	

Em <u>www.fernandok.com</u>

Download arquivos PDF e INO do código fonte

