Força do Sinal Wifi do ESP

ESP-WROOM-32

Por Fernando Koyanagi

Intenção dessa aula

- 1. Programar diferentes chips ESP como Ponto de Acesso (cada um em um canal diferente)
- 2. Verificar a potência de sinal de cada um deles através de um aplicativo no smartphone
- 3. Fazer uma análise geral sobre a força do sinal das redes encontradas

NodeMCU ESP-12E

NodeMCU ESP-WROOM-32

Wifi Analyzer

Wifi Analyzer é um aplicativo que encontra as redes WiFi disponíveis ao nosso redor. Como ele também mostra a intensidade do sinale o canal para cada rede, vamos utilizá-lo para fazer nossa análise.

O aplicativo pode ser baixado na Google Play Store através do link: <u>https://play.google.com/store/apps/details?id=com.farproc.wifi.analyzer&hl=pt</u>

by Fernando K Tecnologia - 2:00 PM

Mas como programar os ESPs que não tem entrada USB?

Para gravar seu código no ESP01 acesse meu vídeo, lá você encontrará os passos necessários.

https://youtu.be/bS1ZOr-WHHE

ESP-02, ESP-201, ESP-12

Assim como no ESP01, você precisará de um adaptador FTDI para gravar.

A seguir mostrarei a ligação necessária para cada um dos ESPs.

IMPORTANTE

Após a gravação do programa no ESP, lembre-se de remover o GPIO_0 do GND.

Bibliotecas

Adicione a seguinte biblioteca "ESP8266WiFi".

Basta acessar "Sketch >> Incluir Bibliotecas >> Gerenciar Bibliotecas..."

po Todos	 Tópico 	Todos	~	ESP8266Wifi					
ESP8266WiFi Enables netwo Clients and se The IP addres More info	Built-In by Iva ork connection and/receive UD as can be assig	an Grokhotkov V (local and Inter P packets throug ned statically or	ersão 1.0.0 net) using t h WiFi. The through a D	INSTALLED the ESP8266 but shield can con DHCP. The libra	uilt-in WiFi. With nnect either to op ary can also man	this library you c pen or encrypted age DNS.	an instantiate Se networks (WEP, V	rvers, VPA).	
SP8266WiFi	Mesh Built-In t	y Julian Fell Ver	ão 1.0.0 T					_	
M <mark>esh network</mark> More info	(library The lil	orary sets up a M	esh Node w	hich acts as a r	router, creating a	a Mesh Network w	ith other nodes.		
Mesh network More info CoTtweet by 1 A library that More info	(saranu Jantho makes Intern	orary sets up a M ong et of Things send	esh Node w	control on IoTty	router, creating a	a Mesh Network w ort ESP8266WiFi.ł	ith other nodes.		

Vamos ao nosso código

Utilizaremos um mesmo código em todos os chips ESP. As únicas diferenças entre eles serão o nome do ponto de acesso e o canal. O ESP32 utiliza uma biblioteca diferente dos demais também, ele utiliza a "WiFi.h", enquanto os outros utilizam a "ESP8266WiFi.h".

*A biblioteca WiFi.h do ESP32, vem junto com o pacote de instalação da placa na IDE do arduino.

//descomentar a biblioteca de acordo com seu chip ESP
//#include <ESP8266WiFi.h> //ESP8266
//#include <WiFi.h> //ESP32

Configurações iniciais

Repare que aqui temos os dados que mudarão de um ESP para outro, o ssid que é o nome de nossa rede, o password que é a senha da rede e por fim o channel, que é o canal que a rede ficará operando.

```
/* Nome da rede, senha e canal */
const char *ssid = "ESP12";
const char *password = "12345678";
const int channel = 4;
/* Endereços para configuração da rede */
IPAddress ip(192, 168, 0, 2);
IPAddress gateway(192, 168, 0, 1);
IPAddress subnet(255, 255, 255, 0);
```


Setup

No setup, vamos inicializar nosso ponto de acesso e setar as configurações. Detalhe para o construtor, que podemos definir o CANAL em que a rede criada irá operar.

WiFi.softAP(ssid, password, <u>channel</u>);

```
void setup() {
  delay(1000);
  Serial.begin(115200);
  Serial.print("Configuring access point...");
 /* Você pode remover o parâmetro "password", se quiser que sua rede seja aberta. */
 /* Wifi.softAP(ssid, password, channel); */
  WiFi.softAP(ssid, password, channel);
 /* configurações da rede */
  WiFi.softAPConfig(ip, gateway, subnet);
  IPAddress myIP = WiFi.softAPIP();
  Serial.print("AP IP address: ");
  Serial.println(myIP);
void loop() {}
```


Experimento

- 1. Todos os chips foram ligados de maneira simultânea, um ao lado do outro.
- 2. O experimento foi feito em uma ambiente de trabalho, com outras redes disponíveis, logo, poderemos ver outros sinais junto aos nossos.
- 3. Cada um dos chips estão em um canal diferente.
- 4. Utilizando o aplicativo, verificamos o gráfico gerado de acordo com a intensidade do sinal, tanto bem perto dos chips, como em um ambiente mais afastado com paredes no caminho.

A seguir veremos os gráficos gerados.

Próximo aos chips 1 metro

ESP02

- ESP32
 - nodeMCU12E

Afastado dos chips 15 metros

1 metro de distância

- Esp32
- nodeMCU12E
- Esp12
- Esp201
- Esp02
- Esp01

15 metros de distância

- Esp32
- nodeMCU12E
- Esp12
 - Esp201
- Esp02
- Esp01

 Podemos ver analisando os gráficos, que o ESP02 e o ESP32 se destacam quando analisamos o sinal, tanto perto, quanto mais afastado.

 •O ESP01 é tão potente quanto o ESP32 ao analisarmos de perto, porém, ao nos afastarmos dele, acaba perdendo muito sinal.

•Os outros chips, acabam por perder mais potência a medida que nos afastamos.

Repare como cada um dos chips estão operando em um canal diferente.

Em <u>www.fernandok.com</u>

Download arquivos PDF e INO do código fonte

